Answer:
Option A
Explanation:
$L_{1}:\frac{x-1}{2}=\frac{y-0}{-1}=\frac{z-(-3)}{1}$
Normal of plane p:n= $\begin{bmatrix}\hat{i} & \hat{j} & \hat{k}\\7 & 1&2\\3&5&-6 \end{bmatrix}$
= $\hat{i} (-16)-\hat{j}(-42-6)+\hat{k}(32)$
$= -16\hat{i}+48\hat{j}+32\hat{k}$
DR's of normal n= $\hat{i}-3\hat{j}-2\hat{k}$
Point of intersection of L1 and L2
$\Rightarrow $ $ 2K_{1}+1=K_{2}+4 and -k_{1}=k_{2}-3$
$\therefore$ k1= 2 and k2 =1
$\therefore$ point of intersection (5,-2,-1)
$\therefore$ Equation of plane ,
1.(x-5)-3 (y+2)-2(z+1)=0
$\Rightarrow $ x-3y-2z-13=0
$\Rightarrow $ x-3y-2z=13
$\therefore$ a=1, b=-3, c=-2, d=13